Regulation of Bile Acid and Cholesterol Metabolism by PPARs

نویسندگان

  • Tiangang Li
  • John Y. L. Chiang
چکیده

Bile acids are amphipathic molecules synthesized from cholesterol in the liver. Bile acid synthesis is a major pathway for hepatic cholesterol catabolism. Bile acid synthesis generates bile flow which is important for biliary secretion of free cholesterol, endogenous metabolites, and xenobiotics. Bile acids are biological detergents that facilitate intestinal absorption of lipids and fat-soluble vitamins. Recent studies suggest that bile acids are important metabolic regulators of lipid, glucose, and energy homeostasis. Agonists of peroxisome proliferator-activated receptors (PPARα, PPARγ, PPARδ) regulate lipoprotein metabolism, fatty acid oxidation, glucose homeostasis and inflammation, and therefore are used as anti-diabetic drugs for treatment of dyslipidemia and insulin insistence. Recent studies have shown that activation of PPARα alters bile acid synthesis, conjugation, and transport, and also cholesterol synthesis, absorption and reverse cholesterol transport. This review will focus on the roles of PPARs in the regulation of pathways in bile acid and cholesterol homeostasis, and the therapeutic implications of using PPAR agonists for the treatment of metabolic syndrome.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PPARs, RXRs, and Drug-Metabolizing Enzymes

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This special issue of PPAR Research is dedicated to " PPARs, RXRs and Drug Metabolizing Enzymes ". Knowledge of PPAR biology, over the past five years, has dramatically increased our...

متن کامل

Pleiotropic actions of peroxisome proliferator-activated receptors in lipid metabolism and atherosclerosis.

Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors activated by fatty acids and derivatives. Although PPARalpha mediates the hypolipidemic action of fibrates, PPARgamma is the receptor for the antidiabetic glitazones. PPARalpha is highly expressed in tissues such as liver, muscle, kidney, and heart, where it stimulates the beta-oxidative degradation of fatty acids. PPARga...

متن کامل

Fibrates Suppress Bile Acid Synthesis via Peroxisome Proliferator–Activated Receptor- –Mediated Downregulation of Cholesterol 7 -Hydroxylase and Sterol 27-Hydroxylase Expression

Fibrates are hypolipidemic drugs that affect the expression of genes involved in lipid metabolism by activating peroxisome proliferator–activated receptors (PPARs). Fibrate treatment causes adverse changes in biliary lipid composition and decreases bile acid excretion, leading to an increased incidence of cholesterol gallstones. In this study, we investigated the effect of fibrates on bile acid...

متن کامل

Fibrates suppress bile acid synthesis via peroxisome proliferator-activated receptor-alpha-mediated downregulation of cholesterol 7alpha-hydroxylase and sterol 27-hydroxylase expression.

Fibrates are hypolipidemic drugs that affect the expression of genes involved in lipid metabolism by activating peroxisome proliferator-activated receptors (PPARs). Fibrate treatment causes adverse changes in biliary lipid composition and decreases bile acid excretion, leading to an increased incidence of cholesterol gallstones. In this study, we investigated the effect of fibrates on bile acid...

متن کامل

Peroxisome Proliferator-Activated Receptors and Atherogenesis: Regulators of Gene Expression in Vascular Cells Nuclear Receptor Signaling in the Control of Cholesterol Homeostasis: Have the Orphans Found a Home? Nuclear Receptor Signaling and Cardiac Energetics

Cholesterol is essential for all mammalian cells. Cellular cholesterol requirements are met through de novo synthesis and uptake of plasma lipoproteins, homeostatic responses that are transcriptionally regulated by the sterol regulatory element-binding proteins (SREBPs). To prevent cytotoxicity attributable to accumulation of excess cholesterol, liver X receptors (LXRs) and the farnesoid X rece...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2009  شماره 

صفحات  -

تاریخ انتشار 2009